Kronrod extensions with multiple nodes of quadrature formulas for Fourier coefficients
نویسندگان
چکیده
We continue with analyzing quadrature formulas of high degree of precision for computing the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials, started recently by Bojanov and Petrova [Quadrature formulae for Fourier coefficients, J. Comput. Appl. Math. 231 (2009), 378–391] and we extend their results. Construction of new Gaussian quadrature formulas for the Fourier coefficients of a function, based on the values of the function and its derivatives, is considered. We prove the existence and uniqueness of Kronrod extensions with multiple nodes of standard Gaussian quadrature formulas with multiple nodes for several weight functions, in order to construct some new generalizations of quadrature formulas for the Fourier coefficients. For the quadrature formulas for the Fourier coefficients based on the zeros of the corresponding orthogonal polynomials we construct Kronrod extensions with multiple nodes and highest algebraic degree of precision. For this very desirable kind of extensions there do not exist any results in the theory of standard quadrature formulas.
منابع مشابه
On Product Integration with Gauss-kronrod Nodes
Gauss-Kronrod product quadrature formulas for the numerical approximation of R 1 ?1 k(x)f (x)dx are shown to converge for every Riemann integrable f , and to possess optimal stability. Similar results are proved for the product formulas based on the Kronrod nodes only. An application to the uniform convergence of approximate solutions of integral equations is given.
متن کاملOn generalized averaged Gaussian formulas
We present a simple numerical method for constructing the optimal (generalized) averaged Gaussian quadrature formulas which are the optimal stratified extensions of Gauss quadrature formulas. These extensions exist in many cases in which real positive Kronrod formulas do not exist. For the Jacobi weight functions w(x) ≡ w(α,β)(x) = (1− x)α(1 + x)β (α, β > −1) we give a necessary and sufficient ...
متن کاملCalculation of Gauss-Kronrod quadrature rules
The Jacobi matrix of the (2n+1)-point Gauss-Kronrod quadrature rule for a given measure is calculated efficiently by a five-term recurrence relation. The algorithm uses only rational operations and is therefore also useful for obtaining the Jacobi-Kronrod matrix analytically. The nodes and weights can then be computed directly by standard software for Gaussian quadrature formulas.
متن کاملA Family of Gauss - Kronrod Quadrature Formulae
We show, for each n > 1, that the (2ra + l)-point Kronrod extension of the n-point Gaussian quadrature formula for the measure do-^t) = (1 + 7)2(1 t2)^2dt/((l + -y)2 47t2), -K -y < 1, has the properties that its n + 1 Kronrod nodes interlace with the n Gauss nodes and all its 2ra + 1 weights are positive. We also produce explicit formulae for the weights.
متن کاملQuadrature formulae for Fourier coefficients
We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Michhelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a func...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 83 شماره
صفحات -
تاریخ انتشار 2014